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Abstract. We show that the measure of angular momentum uncertainty is the invariant 
(AJ)2=(02)-(1)2, rather than sums of products like AJ,AJ,, and that the critical states 
which minimise AJ are eigenstates of maximum weight of J .  n. We also determine the 
critical states for the associated groups E(2), O(2, l), O(4) and E(3). Finally we construct 
coherent O(3) spin states l z )  which are superpositions of normal spin eigenvectors and 
which tend to the classical limit as Iz I + 00. 

1. Introduction 

Every basic treatise on quantum mechanics features Heisenberg’s position-momen- 
tum indeterminacy principle and its deep implications for the physical measurement 
process. Usually, the example of the simple harmonic oscillator is quoted for the 
reason that the ground level is the select stationary state which minimises the uncer- 
tainty product AxAp at th ,  in contrast to the excited states. More modern books go on 
to discuss coherent superpositions of energy eigenstates which retain the minimal 
uncertainty (Glauber 1963), and indeed an extensive literature (see Jackiw 1968, and 
Mathews and Eswaran 1974 for further references) has arisen over the number-phase 
uncertainty product appropriate to these coherent states. 

So far as angular momentum J is concerned, most elementary books limit them- 
selves to observing that only a single component J .  n can be measured at once, with 
the resulting indeterminacy in the other two perpendicular components described by a 
vector model in which J rotates about the direction n of quantisation. In this paper 
we wish to study the indeterminacy question for J in greater depth and try to decide 
what is the appropriate measure for it; certainly singling out a particular product like 
AJ1 AJ2 is not enough because of the obvious bias in direction. The problem of finding 
the relevant uncertainty measure is not confined to 0(3), of course, but applies to any 
group. In 5 2 we discuss what is meant in general by ‘quasi-classical’ states with the 
‘least indeterminacy’ before concentrating on the rotation group in 0 3. Our proposal 
for = ( J 2 ) - ( J ) 2  as probably the correct measure of uncertainty has the virtue 
that AJ is pure scalar, and we determine the critical states which have fixed J 2  and 
least AJ. (In 0 6 we remove the restriction of constant j and define coherent spin states 
as appropriate superpositions of j levels.) Using our knowledge of 0(3), quasi- 
classical states for O(2, 1) and E(2) are found in § 4, by continuation and contraction; 
and in 0 5 we do the same for the associated groups O(4) and E(3). 
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2. Quasi-classical states 

The impossibility of precisely predicting in advance the outcome of a single experi- 
ment which modifies the initial state of the system finds its natural expression in the 
quantum mechanical formulation of the uncertainty relations between measurements 
of incompatible observables. The Heisenberg uncertainty principle, Ax Ap 3 i h ,  
encapsulates the limitations one must face for coordinate X and momentum P 
measurements and sets a lower limit of precision on the accuracy of experimental 
determinations of these particular dynamical variables. In this case, the best one can 
do is to minimise the uncertainty product at th,  because this is the closest approach to 
the classical situation of absolute precision; as shown in elementary textbooks this 
limit is reached for ‘minimal states’ which satisfy the equation 

the solutions of which are the well known oscillating Gaussian wave packets-these 
include the now familiar ‘coherent states’ of the oscillator (mass m, frequency o) 
wherein Ap = mo Ax as well. 

We would like to pose a similar question for more general commutation relations, 
appropriate to any Lie algebra, [F,, F,] = ic,rFr where F are the generators and c are 
the (real) structure constants. Namely, what are the ‘quasi-classical states’ for which 
the uncertainties are minimised? Since the general problem leads us to commutators 
which are not c numbers, whose expectation values therefore depend on the (nor- 
malised) state /@) in question, minimisation of AF, AF, is not guaranteed to equal 
$lCrs,(Fr)J unless the system happens to be in an eigenstate of the commutator: in that 
circumstance Heisenberg’s derivation of the principle is correct and gives the ‘minimal 
equation’ 

[ U s  (Fr -(Fr>) * i AFr(Fs -Ws))Il+) = 0. (1) 

Otherwise, we are obliged to resort to Jackiw’s analytic method (1968) which gives 
instead the ‘critical equation’ 

and to look for normalisable solutions of (11) which minimise AF, AF,. On the other 
hand, it should be pointed out that if one chooses to minimise the uncertainty product 
ratio AF, AF,/Jc,s,(Fr)/ then Heisenberg’s direct method (I) does, in fact, apply. 

This preamble leads us to the question of what exactly we have to minimise when 
we are dealing with several Lie algebra generators, and how we are to sharpen the 
definition of a quasi-classical state. Two problems pose themselves: (i) should one 
minimise just the products @, AF, or perhaps @, @‘/(C,t(Fr)( or linear com- 
binations thereof, or even multiple products AF, AF, AFr. . . ? (ii) Having decided on 
the choice (i), how many operators should one take into account? Or, in other words, 
how large the Lie algebra? The rational answer to the second question is that one 
must include all the observables of physics (which comprise a maximally commuting 
set for resolving any degeneracy) and perform the chosen minimisation on the smallest 
Lie algebra comprising these observables. In this way we avoid considering operators 
which are not measurable, whose expectation values have no direct physical content. 
In this paper we shall have little to say about the grand case (ii), but will concentrate 
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on the choice (i) to be made when faced with a particular Lie algebra. More spe- 
cifically, we will focus our attention on the quasi-classical states for the rotation group 
O(3) and allied groups. Having sorted these out, some extensions to more involved 
cases suggest themselves. 

3. A case study: O(3) 

Let us record a few simple facts about angular momentum, which, if not always 
described in the standard texts, are trivially deduced. Let bm). be a normalised 
eigenstate of the angular momentum (in units of A) directed along unit vector n, 

J .  nbm), = mhm),, J2(jm). = j ( j  + l)(jm),. (1) 
Then, for such a state, 

and the product AJ1 AJz is minimised at ij by taking Iml = j ;  the other uncertainty 
products AJz AJ3 and AJ3 AJ1 of course being zero. This illustrates the fact that for a 
compact Lie group like O(3) where the A F  are bounded it is quite easy to arrange for 
a number of indeterminacy products to vanish identically by simply diagonalising as 
many generators as simultaneously possible (the Cartan sub-algebra defining the 
rank). 

If we plot the AJ in three dimensions we recognise the products AJIAJz ,  etc, as 
uncertainty areas. Several natural measures of total uncertainty come to mind, 
namely 

the ‘uncertainty volume’, A2J AJI AJz A J s  (4a 1 
the ‘uncertainty surface’, AzJ [(U1 AJ$ +(AJz AJ3)’ + (AJ3 AJ1)z]l/z (4b)  

the ‘uncertainty radius’, A J  [(AJ$+ (AJ# +(hJ3)2]1’2. (4c)  
We note that? only the latter is a true scalar. A3J becomes a rotational invariant in the 
infinitesimal limit only, while the components AJi AJj in A2J can be regarded as 
defining a surface vector. Since it is also true that 

AJi LiJz 2 4 1 ( J 3 ) (  ( 5 )  
etc, more exotic measures of uncertainties can be contemplated, involving weightings 
by expectation values, for instance 

t From the inequalities between geometric and arithmetic means, note also that (A’J) 2=31/2(A3J)2/3 and 
a 3”’A3J. 
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and so on. Because we can analyse the case of angular momentum in some detail, 
fortunately we are able to decide which uncertainty measure is the most appropriate 
and obtain some clues as to how to proceed with more complicated groups. 

It is immediately apparent that minimising the uncertainty volume gives precious 
little information; thus A3J = 0 when we are dealing with eigenstates of any individual 
component Ji. Unfortunately too, as a measure of indeterminacy it depends on one’s 
choice of axes. For instance, if we select n = (1, 1, 1)/J3 and m = j ,  then according to 

u1 = = A J ~  = ( j /3)” ’  

giving A3J = ( j /3 )3”  for this choice of quantisation direction. On the other hand, 
referred to axes parallel and perpendicular to n, (A3J) .  is zero. For these reasons we 
shall reject measure (4a) as totally unsatisfactory. 

Turning to (4b), we know from the usual direct derivation of the relations ( 5 )  that 

A’J Sg(J3)’ +(./2)2+(51)2]1/2 =&U + 1) -(AJ)2]1’2. (7) 
In fact, we can remove the equality sign from (7) since the lower bound can only be 
attained for states which satisfy 

C i ( J i  -Vi))/+) = C z ( J z - ( J 2 ) ) ( + )  = C 3 ( J 3 - ( 5 3 ) ) ( + )  

where c2/c1, c3/c2 and c1/c3 are all imaginary, which is clearly impossible. (The case 
when one of the uncertainties, say AJ3, is zero, causing some ci to vanish, has to be 
examined separately; here the answer is already known, namely A2J is indeed mini- 
mised at $ j  for /+) = bj). Then the equality sign in (7) does indeed apply.) Because 
there is a strict inequality in (7) for all AJi ZO, this implies a failure of the direct 
method, and to minimise A’J we must resort to Jackiw’s analytic method which 
supplies a weaker condition on the wavefunction. Here one finds the critical equation 

(8) 

(9) 

( ( J 1  - ( J 1 ) ) 2 [ ( A J ~ ) 2  + (AJ3) ’ I  +cyclic terms - 2(A2J)’)(+)  = 0 

[ v:(J: - (.TI)’) +cyclic - ( A z J ) 2 ( A J - ’ ] ( + )  = 0 

which can be cast in the form 

where the components of the unit vector v are given by 

v: = [(Nd2+ ( & ) 2 ] / 2 ( u ) 2  etc. 

For reasons of symmetry A’J attains its physical extremum? when v = (1, 1, 1)/J3 
with all AJi equal. As shown in the appendix the solution of (9) with the least A’J is 
none other than kj)” and yields A’J = j .  On the other hand, we clearly do better for 
the uncertainty surface by taking one uncertainty to vanish (say AJ3) since then A2J is 
as small as t j .  As it is unreasonable to say that an eigenstate of J3 or J1 or J2 has a 
smaller uncertainty than an eigenstate of J . n  we conclude that A2J is not a good 
measure of indeterminacy either, primarily because of its lack of rotational invariance. 

The last simple case to examine is the uncertainty radius (4c). Here the critical 
states are given by 

t The hypothetical extremum AzJ = 0 cannot occur physically unless j = 0. Other possibilities like Y = 
(1 ,  1 ,0) /42  can be ruled out as they imply that AJ, = AIJ2 = 0, an impossibility. The case AJ, = 0, AI, = 
AJz # 0 with Y = (1,  1 ,  d2)/2 has already been considered. 
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In the appendix we prove that the solution of (1 1) is the naive answer = kj). which 
yields the minimal AJ = j ” ’ .  This answer has the virtue that it does not depend on the 
orientation of axes, and we therefore suggest that the radius AJ is much the best 
measure of uncertainty. It can be argued that what we are proposing for angular 
momentum contradicts the standard procedure for position-momentum uncertainty. 
However, it must be pointed out that the Weyl group of Heisenberg commutators is 
different from O(3) and is, moreover, invariant under the scaling X+AX,  P+P/A- 
hence the area A x A p  is the natural measure of uncertainty, not ( A X ) ~ + ( A P ) ’ .  For J 
there is no such scaling invariance, rather the relative weights of J components are 
absolutely fixed via the Casimir operator J 2 .  And that is why we are advancing AJ as 
the relevant measure, rather than A’J or A’J. 

The more sophisticated measures of uncertainty (6a )  and (6b)  would require an 
analysis in their own right were it not for their lack of rotational symmetry. Without 
examining them in detail we note that for bm). states considered in (1) and (2), 

S3J = [fj(j + l)-$m2I3[(l -n?)(l  -n:)(l -n$/nlnzn31m13] 

8 ’J = [ i j ( j  + 1) - tm  ’][(I - n :)(I - n:)/n: + cyclicI1/’ 

become infinite when quantisation along conventional axes (x or y or z )  is made, and 
they achieve their minimal values of 1/3J3 and jJ3 respectively along axis n = 
(*l, *l, *1)/J3 when m = j .  This suffices to demonstrate their uselessness although 
one could no doubt arrive at the same conclusion by investigating the critical states of 
S3J and S’J. 

In a nutshell, the final result of this section is that the states of minimal uncertainty 
are Ijj)” and possess the uncertainty radius A J  = j l / ’ .  Of course there is no uncertainty 
in J’. 

4. E(2) and O(2,l) 

We can approach the Euclidean group by a contraction of O(3); by putting P 1  = c J l ,  
P2 = cJ2 and taking the limit c + 0 in the resulting commutators 

[ P ~ ,  P’] = ic2~’,  [Pz, J3I = iPi, CJ3, P11= iP’ (12) 
one arrives at the E(2) Lie algebra. The Casimir 

J’ = (P: +P:)/c’ + J :  + 00 

is this limit, so by fixing p = j c  and finite, p 2  remains as the eigenvalue of the E(2) 
Casimir $ 2 .  The relevant uncertainty here is A P  and since, for the critical angular 
momentum states ljj). already found, 

(AP1)’ + (AI‘’)’ = c ’[(U)’ - (AJ3)’] = ic ’ j  ( 1 + n z) = ipc ( 1 + n :), 
we see that as c + 0, A p  + 0 for all n. However, (U3)’ = i(1- n:)p /c  +CO unless 
n3 = 1. These minimal states of E(2) are none other than the eigenstates 14) of the 
translation group, but because they are not strictly normalisable we must analyse them 
more carefully. 

Form the normalised wave packet 

lfc> = dLf(fi)lE), If(fi)l‘dfi= 1. 
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Therefore 

(AF)2 = I L2p(L)I2 d 6 -  (I Lp(6)12 dL)2. 

In the limit that f becomes a distribution: PI2+ 6@- 6), we strictly get Ap + 0, but the 
problematic quantity is now (J3)  = -fjf*(iaf/a4) dk2 d4. In order to ensure Her- 
miticity of J3, we ought more properly to form periodic wave packets, for example 

f(4) a[exp(-$ cos244/u)](sin $+)‘ I2,  0<4<27r  
with 

a s u + O  
(cos $4) = 0, (cos2f4) = u/2 

in which case AJ3 = 0 trivially. Minimal wave packets of this type correspond to the 
contracted angular momentum states bj)= quantised along the third direction. The 
other familiar E(2) eigenstates, 

~3lp’m) = mlp2m), (pl * i ~ ~ ) ( p ~ m )  = (Jp2)lp2m * 1 )  
have the variances Ap = p and AJ3 = 0 and are not minimal states unless p = 0. They 
correspond to taking m finite in bm)= while letting j = p / c  + CO. 

Turning next to the continuation from O(3) to (2, l ) ,  we put J1 = iK1, J2 = iKZ to 
arrive at 

[Kl, &I= -U37 [ J 3 ,  K,1= iK2, [J3, K2] = -iK1 (13) 
wherein I? and J3 are now the Hermitian generators. The O(2, 1) unitary represen- 
tations are characterised in the same way as angular momentum 

(J:-K:-Ki)bm)=j(j+ 1)bm) 

J3bm> = m bm) 
(14) 

but the range of j and m values is different. There are: 
(a) the discrete series D” where 

m=*(j+l),*(j+2),  . . .  
(b) the principal series Dp where 

m = integer or half-integer (15b)  

m = integer and -1 < j < 0. (15c )  

j + f = pure imaginary = ip ; 

(c) the complementary series D” where 

Continuous cases ( b )  and ( c )  have a negative Casimir and the case j = -1 gives a trivial 
representation. Having learnt the lesson of 0(3) ,  we suggest that the quasi-classical 
states here are the ones which minimise 

AK E [(AK1)2 + (AK2)’- (U3)2]1/2. (16) 
If we stick to the standard states (14) for the moment, this means that, since AK = 
[ m 2 - j ( j  + l)]’”, for (a )  D’, AK minimises at ( j  + 1)112 when m = * ( j  + 1 ) ;  while for 
(b)  and ( c )  DpSc, AK minimises at ($+p2)lI2 or [ - j ( j  + l)]’” when m = 0. The O(2, 1 )  
invariance of AK ensures that the same conclusions are true for any other direction of 
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quantisation determined by a ‘unit vector’ n = (nl, n2, n 3 ) ;  n $ - n : - n $ =  1.  The for- 
mulae 

(17) 
( A K ~ , z ) ~  = f ( l  +n?,2)[m2-j(j + 111 
( A J ~ ) ~ = + ( ~ $ -  l)[m2-j(j+1)] 

are the appropriate continuations of ( 2 ) .  

5. O(4) and E(3) 

O(4) being locally isomorphic to O(3) x 0(3), we can immediately apply the results of 
8 3 to it. In the usual way, form two vectors J = (523,531, J 1 2 ) ,  K = (514,524, 534) out of 
the O(4) generators J,,, and in the ensuing commutators, 

J x J = K x K = LT, J x K = i K  (18) 

take independent linear combinations J (  *) = f(J f K )  to obtain 

J (  *) x J (  *) = iJ( *), J ( * )  X J (  7 )  = 0. (19) 

The O(4) states are, in effect, labelled by the 0 , ( 3 )  Casimirs ja(ja + 1) and written 
Ij+m+, j-m-),,(+),,(-) when quantised along axes n( +) and n( -). The O(4) Casimirs 
themselves are given by 

Z2 =$JcLJp, = +(J2+K2)  = J (  + ) ‘ + J (  - ) ’= j+( j++ 1) +j- ( j -+  1) 
2 1  (20 )  n = J ~ c , , ~ ~ J , J ~ ~ I = I J .  K I = ( J ( + ) 2 - J ( - ) 2 1 = P + ( j + +  l)-j-(j-+l)(. 

These are the invariant dispersions we are suggesting should be minimised in trying to 
define a quasi-classical state. The smallest dispersions occur for ma = j* whereupon 

%(W2 + @W21 = (iJ,J.,) -&,,>(J,J 
= j +  + j -  = - 1 + (f +E2+ n2)1/2 + (f +X2-  n2)1/2 

= P+ - j - l=  I(; +X2 + n y 2  - (;+c2-n2)1/2). 

( 2  1) 

(22) 

In fact, these critical states are eigenfunctions of ~J,,n,, and of ~ E , , ~ J , J Z ~ A  where the 
‘unit tensor’ n,, is composed of n+ and n- similarly to the way J,, is broken up into 
J (  +) and J (  -). If we do not place any further restrictions on I1 and I: that is all there 
is to say. However, if we require further a vanishing pseudo-scalar Casimir n, then 
j +  = j-( = j  say) and AX = ( 2 j )  ‘I2 is the minimal scalar uncertainty. 

The contraction to E(3) is fairly straightforward. Put P = cK as in § 4 and let c + 0 
with J held finite, but (Kl+W somehow. Because J = J ( + ) + J ( - ) ,  this means we 
must let j +  and j -400 with j+- j -  = A  held fixed. In this limit, the E(3) Casimirs P2 
and J .  P arise from O(4) Casimirs X2+;P2/c2, 112+ J .  P/c,  and thus, putting p = 
2cj+, 

(An)’= ( ( J -  K ) - ( J )  (K)(=~E,”xA((J,J~A)-(J~Lv)(~~A)( 

P’ + 2c2Q+(j+ + 1) +j- ( j -  + I)] + p 2  

P. J + c n ’ + c [ i + ( j + +  l)-j.-(j-+ l)]+Ap. 
( 2 3 )  
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The E(3) variances tend, as c + 0, to 

Ap = c[(AK)’I1/*+ 2c AX = 2c(2jC)’/*+ 0 

~ A A  = ((P. J )  - (P) . (a)[ = c ( A ~ ) ’ - +  C I A  I + o 

i.e. the minimal states IPA), eigenstates of P 2  and P. J, can have vanishing dispersion 
after strongly localised wave packets are constructed in the manner of 9 4. We note 
that the angular momentum dispersion becomes infinite 

= ( J 2 )  - ( J )  . ( J )  

=j+( j+  + I )  +j - ( j -  + 1) +2j+j-n+ . n- - (n+j+ + n-j-)2 

= ( j +  + j - )  + 00 

and this seems to be the price we must pay to be certain of the helicity. 

6. Coherent spin states 

A great deal is known about coherent states for the harmonic oscillator, but far less 
about coherent states for angular momentum. (See Bacry et a1 (1976) for a recent 
review.) In making an analogy between J3 and the number operator, and between J- 
and the annihilation operator, Radcliffe (1971) was able to construct a coherent spin 
basis and demonstrate its usefulness in the context of statistical mechanics for ferro- 
magnetic systems. (Subsequently Kolodziejczyk and Ryter (1974) showed that a state 
of minimal uncertainty (AJ1) (AJ2)  was only possible for Radcliffe’s ground state, i.e. 
lJ31 = j ,  as we proved more directly in 0 3.) His formulation fixed with certainty the 
Casimirs jl, j 2 ,  . . . of a series of angular momenta. Owing to the finite degeneracy of 
spin vectors having no counterpart in the oscillator we would advocate the alternative 
course of equating j ,  not J3 ,  with the number operator of the oscillator and then 
constructing a coherent basis as an infinite superposition of different spin-j states. We 
can minimise AJ by superposing kj)” states, so one rather obvious possibility is to 
form the linear combination 

la) = 1 c~’[exp(-5(cu(~)]1jj)/(j!)~’* 

for Bose systems say, from which it is readily established that 

i 

( J 2 )  = (a I2(b l2 + 21, (JY = la I2(b l 2  + 11, AJ =(a(. (26) 
A more complete procedure, which includes integer and half-integer spins, is to 

construct creators at and annihilators a of spin-; 

[a,, a$ = sa, ; P = t, .1 (27) 

in terms of which J = ;atma. The usual angular momentum states are created as 
follows: 

(a;y +m ( a y ”  
1 / 2  IO). l i d  = [ ( j  + m ) ! ( j  -m)!] 
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We can build up coherent spin states, labelled by a two spinor z = (zr, zr) as follows: 

The exponential factors e-'z'z/z are included to simplify the 'orthogonality' and 'com- 
pleteness' relations: 

These new states incorporate the simple proposal (25) if we set ZJ = 0 and sum over 
half-integer as well as integer j .  They may also be related to Radcliffe's states, 

Because they are eigenstates of the annihilation operator, it is relatively easy to 
work out the dispersion of J z .  One finds 

( Z l J l Z )  = fz ' 0 2  

( Z J J 2 ) 2 ) = b Z t Z ( Z t Z  +3) 

therefore 

(AJ)*/(J'> = (1 + 32 +z)-l (33) 

so as IzI + 00 the classical limit is reached. Such states could conceivably be useful in 
describing highly excited molecular rotation levels. Having said that, it is not imme- 
diately clear, however, what is the analogue of the oscillator phase operator 4, though 
it must surely be connected to the a and at  via the structure 

cos 4 -u++a, s in4  - a + - a .  

We emphasise that all recent studies of coherent spin states (Belissard and Holtz 
1974, Hioe 1974, Peremolov 1972, Onofri 1975) base themselves on Radcliffe's 
original suggestion and confine themselves to fixed j .  Thus they differ in an essential 
way from our proposal (29). 

7. Generalisations 

We have lowered our sights to O(3) and closely related groups in this paper to deduce 
that quasi-classical states are those which minimise the uncertainty invariant A J ;  the 
vectors turn out to be eigenstates of highest weight of J .  n. For other Lie algebras a 
natural generalisation is to look for minima of the quadratic 

( A n 2  = crsrcrsu ( ( F t F u )  - (FO(Fu)) 
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and higher-order Casimirs. We anticipate again that the quasi-classical vectors have 
highest weight. For Lie algebras which are semi-direct products of an Abelian algebra 
and a compact algebra, our experience with E(2) and E(3) suggests that the minimal 
states are eigenstates of the Abelian sub-algebra and any other Casimirs. Finally, if 
one abandons the restriction that Casimirs themselves be precisely known, the method 
of 06 suggests a route by which one can construct appropriate coherent states 
different from those of Peremolov (1972). 

Appendix 

We wish to solve the equation 

( J - ( J ) ) 2 1 $ )  = (AJ)21$) 
wherein AJ, = AJ2 = AJ3 and therefore A’J = 3-1/2(AJ)2. We look for solutions where 
I$) is the usual eigenstate of J 2 .  The equation then reduces to 

2 J .  ( J > 1 $ >  = Li( j  + 1) +(J>2  - (AJ)211$>. 

Thus I$) is in an eigeristate of J .  n where n is a unit vector parallel to ( J )  and therefore 

(A. 1) 
The equality of uncertainties entails that ( J )  = m(*l, * 1, *1)/J3 and correspondingly 
(u112 = (U,)’ = ( ~ 3 ) ~  = & ( j  + 1) - m’] giving A ~ J  = [ i ( j  + 1) - m’]. The critical state 
with the least A2J then corresponds to the selection m = j .  

If we abandon the constraint A J l  = ATz = A J 3 ,  the solution to (A.l) is simply that 
J .  nl$)  = ml$) with ( J )  = mn, namely the case considered at the beginning of 4 3. 

J .  ( J > l $ >  = mI(J>IIJI). 

References 

Bacry H, Grossman A and Zak A 1976 Lecrure Notes in Physics vol. 50 (Berlin: Springer) 
Belissard J and Holtz R 1974 J. Math. Phys. 15 1275 
Glauber R J 1963 Phys. Reo. 131 2766 
Hioe F T 1974 J. Marh. Phys. 15 1174 
Jackiw R 1968 J. Math. Phys. 9 339 
Kolodziejnyk L and Ryter A 1974 J. Phys. A: Marh., Nucl. Gen. 7 213 
Mathews P M and Eswaran K 1974 Nuooo Cim. B 19 99 
Onofri E 1975 J. Math. Phys. 16 1087 
Peremolov A M 1972 Cbmmun. Math. Phys. 26 222 
Radcliffe J M 1971 J .  Phys. A: Gen Phys. 4 313 


